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Abstract

The finite element method is applied to grid smoothing in three-dimensional geometry, generalizing earlier results

obtained for planar geometry. The underlying set of equations for the Cartesian components of grid coordinates, based

on the notion of harmonic coordinates, has a natural variational formulation. To estimate the target metric tensor that

drives the elliptic grid equations, the metric tensor components are computed on a coarse-grained grid. Numerical

examples illustrating the proposed approach are presented together with results from the smoothness functional, which

is used to measure the quality of the resulting grid.
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1. Introduction

The field of two-dimensional mesh generation and smoothing is well developed; many approaches exist

that have a successful history in a variety of applications. However, issues still remain in this area, including
the need for robust methods that are effective for applications which possess a wide disparity of length

scales and that provide acceptable performance on problem domains that are geometrically complex. Spe-
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cifically, geometric issues are particularly evident in the vicinity of convex and concave boundaries, as has

been documented in the monograph of Knupp and Steinberg [1].

Past experience with two-dimensional grid smoothing [2] indicates that satisfactory results may often

be obtained for problems with convex or concave boundaries by solving a set of Laplace–Beltrami

equations. This system generalizes to higher dimensional spaces through the use of harmonic coordi-
nates [3]. In the literature, the concept of harmonic maps between two Riemannian manifolds is well

established. Nishikawa [4] provides a formulation of the harmonic map based on a variational princi-

ple. The earliest work devoted to mesh applications is contained in the articles of Brackbill and Saltz-

man [5] and Dvinsky [6].

Solutions of a biharmonic system may also be advantageous for particular applications in grid smooth-

ing [7,8]. Altas et al. [9] develop a three-dimensional biharmonic approach on a structured mesh, and em-

ploy multigrid and Krylov iterative methods to solve the resultant algebraic system. Helenbrook [10]

advances a biharmonic method based on a Galerkin finite element method and presents results on unstruc-
tured, two-dimensional meshes. Additionally, Sparis [8] proposes a biharmonic method that uses a precon-

ditioned conjugate-gradient solution strategy for structured, two-dimensional problems. These approaches

are promising, but distinct from the Laplace–Beltrami method described here by targeting three-dimen-

sional structured applications (Altas), and two-dimensional problems (Helenbrook and Sparis).

In common with other popular elliptic approaches, the biharmonic method does not perform well on

domains with highly curved boundaries. For example, Fig. 4 of Sparis [8] shows a structured two-dimen-

sional mesh on such a domain (the ‘‘Volkswagen Beetle coordinate grid’’). In this example, the inner

boundary conforms to the profile of the automobile, where the outer boundary is intended to conform
to the wind tunnel enclosure. The mesh generated by this implementation of the biharmonic method recedes

from strongly curved boundaries (the Volkswagen windshield and corners of the wind tunnel). Although

the equation system is different, this effect is also present with classical Laplacian smoothing and many

of the popular methods compared in Knupp�s Rouge�s Gallery [1]. Sparis suggests that ‘‘the addition of

appropriate source terms on the right hand side of the biharmonic equation at the apexes’’ might be a pos-

sible remedy to the results he obtained.

Sparis� hypothesis further reinforces the development of the Laplace–Beltrami method detailed in this

paper. Indeed, one way to view the proposed Laplace–Beltrami method is that it is based on adding ‘‘ap-
propriate source terms’’ (or control functions) to the popular Winslow–Crowley elliptic method, as dis-

cussed in Section 3 of Hansen et al. [2]. The result of adding these terms appears promising. Notice the

similarities between the Volkswagen grid in Fig. 4 of Sparis [8] and Hansen�s horseshoe test problem [2],

where the Laplace–Beltrami method was used to minimize the repulsion of the mesh away from the bound-

ary feature. These examples both have highly-curved boundaries of similar character; the outer boundary is

strongly convex while the inner is concave. For these cases, the implicit control functions of the Laplace–

Beltrami approach appear to inhibit the tendency of the mesh to recede away from convex boundaries

toward concave areas. As a final example of the effectiveness of the Laplace–Beltrami approach, a more
challenging three-dimensional version of this horseshoe with an additional boundary curvature feature is

discussed in Section 4 of this paper.

The goal of this paper is to extend a previous formulation developed for two-dimensional meshes [2], to

address three-dimensional, unstructured domains. This extension is based on the elliptic Laplace–Beltrami

system that has its origins in differential geometry and quasi-conformal mapping. In the earlier paper, it was

shown that this basic approach relates several popular grid generation methods, including Laplacian

smoothing [11], the Winslow–Crowley method [12,13], and work advanced by Thompson [14,15], Knupp

[1], Khamayseh [16], Tipton [17], and others. The Laplace–Beltrami approach was shown to be successful
for two-dimensional domains with highly-curved boundaries and was contrasted with an unstructured

Laplacian method [2]. This paper continues this comparison, considering three-dimensional problems pos-

sessing highly-curved boundaries.
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In many cases, effective algorithms for two-dimensional applications are not easily extended to three-

dimensional problems, due to various limitations in their development. Undesirable artifacts, such as algo-

rithm convergence issues or insufficient operator approximation order, often severely influence the results

when the approach is extended to three dimensions. Mesh folding (the presence of non-convex elements or

elements with a negative Jacobian value), which may or may not have been an issue in the two-dimensional
approach, is a much larger concern in three dimensions due to the additional degree of freedom of the ele-

ments and node points.

The additional dimension usually aggravates any convex/concave boundary issues that were present in

the two-dimensional implementation. In this case, boundary geometric issues tend to be more complex as

they typically manifest themselves in two or more directions, vs. the simple planar convexity (or concavity)

cases encountered in two-dimensional applications. Further, the analysis of three-dimensional phenomena

in general is rather difficult due to the sheer magnitude of data involved. The implementation of algorithms

and test suites are also significantly more challenging than the addition of another dimension would initially
suggest. These issues tend to limit progress of three-dimensional approaches.

This paper proposes a finite element solution for the harmonic equations in three dimensions, thus gen-

eralizing the results obtained for planar grids. In Section 2, equations governing the grid smoothing oper-

ation are derived. In Section 3, these equations are cast into a finite element form. Numerical examples

illustrating the proposed procedure are developed in Section 4. Finally, conclusions and recommendations

are formulated in Section 5.
2. The equations for grid coordinates

Consider a volumetric domain X in three-dimensional Euclidean space (x,y,z) whose coordinates are

written as xi = (x1,x2,x3). In local coordinates ua = (u1,u2,u3), a length element is written as
ds2 ¼ gab du
a dub; ð1Þ
where the covariant components of the metric tensor are given as
gab ¼
X3

i¼1

oxi

oua
oxi

oub
: ð2Þ
Throughout this development, the Einstein convention implies that summation is performed over re-
peated local mesh coordinate indices.

The contravariant components gab form the matrix inverse with respect to gab. Thus
gacg
cb ¼ dba ; ð3Þ
where dba denotes the Kronecker delta symbol. The determinant g = det(gab) is always positive since the

length element ds2 is positive.

In two-dimensional surface geometry, given the local coordinates ua on a surface, it is convenient to dis-

cuss isothermal coordinates ûa. In these coordinates, the line element is proportional to the Euclidean form

that is written as a sum of squares of coordinate increments. These isothermal coordinates, viewed as func-

tions of coordinates ua, satisfy the Laplace–Beltrami equations [18]. A generalization of these considera-

tions to three or more dimensions leads to the concept of harmonic coordinates, introduced by Lanczos

[19] within the framework of the Einstein equations for gravitational fields. The harmonic coordinates
xi, defined by the condition
Dxi ¼ 0; i ¼ 1; 2; or 3; ð4Þ
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may be obtained from a variational formulation involving harmonic maps [4,20]. To demonstrate this, con-

sider a mapping f:M ! N between two Riemannian manifolds M and N with local coordinates ua and xi,

respectively. If the metric tensors of M and N are gab(u) and hij(x), the energy functional of the map f is

defined as
E½f � ¼ 1

2

Z
M
gabðuÞ of

i

oua
of j

oub
hij

ffiffiffiffiffiffiffiffiffi
gðuÞ

p
d3u; ð5Þ
where xi = fi(u) are the local coordinates of the manifold N and g(u) = det(gab). A transformation f(u) is

referred to as a harmonic mapping if f satisfies the Euler equations of the variational problem correspond-

ing to Eq. (5). The Euler equations of the energy functional read
1ffiffiffiffiffiffiffiffiffi
gðuÞ

p o

oua
ffiffiffiffiffiffiffiffiffi
gðuÞ

p
gab

of i

oub

� �
þ gabCi

jk

of j

oua
of k

oub
¼ 0; ð6Þ
where Ci
jk are the Christoffel symbols of the second kind on the manifold N, formed with the aid of the met-

ric tensor hij. To derive Eq. (6), note that the metric tensor hij(x) may vary when the variation of the func-
tional is evaluated. This leads to the term involving the Christoffel symbols.

Harmonic mapping theory is significant in grid generation because the elliptic grid generator is obtained

as a special case of the harmonic map by assuming that the target manifold N is Euclidean [21]. Indeed, in

this case, the Christoffel symbols in the second term of Eq. (6) vanish, resulting in the Laplace equation for

the coordinates xi
Dxi � 1ffiffiffi
g

p
o

oua
ffiffiffi
g

p
gab

oxi

oub

� �
¼ 0: ð7Þ
This expression represents the Laplacian operator acting on the scalar variables xi [18], and forms the gov-

erning system used for the proposed mesh smoothing approach.

The smoothness quality metric used in this study is based on a generalization of an approach advanced

by Knupp et al. [22]. This metric may be extended to three dimensions by stating it in terms of the energy
functional presented in Eq. (5). Given a Euclidean target manifold, the metric tensor hij becomes diagonal:

hij = dij. In this case, the energy functional becomes
E½g� ¼ 1

2

Z
M

X3

i¼1

giiðxÞ
ffiffiffiffiffiffiffiffiffi
gðxÞ

p
d3x; ð8Þ
where
giiðxÞ ¼ oxi

oua
oxi

oub
gabðuÞ; ð9Þ
and the invariant volume element
ffiffiffiffiffiffiffiffiffi
gðxÞ

p
d3x ¼

ffiffiffiffiffiffiffiffiffi
gðuÞ

p
d3u. Eq. (8) is used as the smoothness quality criteria

in the examples to be presented later. The covariant metric tensor gij(x), a transform of the metric tensor

gab(u), is assumed to be a prescribed function of coordinates. Following the ideas of Dvinsky [6] and Brack-

bill [23], one is free to specify gab(u) in a manner most appropriate to accomplish grid smoothing. This con-

cept will be expanded in the following sections.
3. The finite element approximation

The Galerkin method forms the basis of the finite element approximation to the solution of the system of

Eq. (7). In this approach, the elliptic system is multiplied by a sufficiently smooth function w to produce a

weak form. After integration by parts one obtains
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Z
X

ow
oua

ffiffiffi
g

p
gab

oxi

oub
d3u�

Z
oX

w
ffiffiffi
g

p
gab

oxi

oub
dsa ¼ 0; ð10Þ
where dsa = na ds in the second term refers to the integration over the boundary of X (oX), which is a covar-

iant oriented line element. In this context, na are the contravariant components of the unit outward normal.

For the Dirichlet boundary value problem, the grid coordinates xi are specified with the boundary con-

ditions xi ¼ x̂i on oX. In this case, the set of equations
Z
X

ow
oua

ffiffiffi
g

p
gab

oxi

oub
d3u ¼ 0; ð11Þ
leads to a nonlinear algebraic system
XN
n¼1

KmnðaÞain ¼ 0; i ¼ 1; 2; or 3; ð12Þ
where the stiffness matrix Kmn is
Kmn ¼
Z
X

owm

oua
ffiffiffi
g

p
gab

own

oub
d3u: ð13Þ
In Eq. (12), the unknown coefficients ain are the expansion coefficients of the coordinates xi in terms of

the basis functions wn(u)
xiðuÞ ¼
XN
n¼1

ainwnðuÞ; i ¼ 1; 2; or 3: ð14Þ
Only first-order finite element basis functions are considered for this development. In the case of hexa-

hedral elements, for example, trilinear basis functions are obtained by converting the functions
wiðn; g; fÞ ¼
1

8
ð1þ nniÞð1þ ggiÞð1þ ffiÞ; i ¼ 1; . . . ; 8 ð15Þ
defined on a master element Xn = {n: �1 6 n 6 1, �1 6 g 6 1, �1 6 f 6 1}, to the functions defined on

element Xe. In Eq. (15), the variables ni, gi and fi assume values of ±1, depending on the nodal location.

The crucial step in the finite element scheme is the evaluation of the metric tensor in Eq. (13), which con-

trols the properties of the final mesh. Consider the transformation of the master element Xn into element Xe

given in terms of the node coordinates. In this case, xem; y
e
m; z

e
m of the nodes Ne

m; m ¼ 1; . . . ;M , form ele-

ment Xe, or
xe ¼
XM

m¼1
xemwmðnÞ;

ye ¼
XM

m¼1
yemwmðnÞ;

ze ¼
XM

m¼1
zemwmðnÞ:

ð16Þ
The components of the current metric tensor geab, associated with element Xe, are described by the

equations
geab ¼
XM
m¼1

XM
n¼1

ðxemxen þ yemy
e
n þ zemz

e
nÞ

wm

ona
wn

onb
: ð17Þ
Unfortunately, the use of the current metric tensor, being descriptive of the current grid, will not result in

any smoothing of the mesh. Said another way, if one evaluates the definition of the metric (Eq. (17)) using
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the current nodal coordinates, a metric tensor that describes the current mesh would be obtained. If this

tensor is then used to compute new nodal coordinates using Eq. (12), these new values will not differ from

the previous values and the mesh will not change. Therefore, to solve for the nodal coordinates of the

smoothed mesh, one must supply a modified metric tensor that will produce the nodal coordinates desired

in the solution. To address this issue in two-dimensional geometry, an estimate of this target (or prescrip-
tive) metric tensor was obtained by considering the centers of elements neighboring Xe, which is analogous

to calculating the metric tensor on a dual mesh. In the three-dimensional case, an element is often adjacent

to a large number of elements of various shapes. In three-dimensions, it is usually more expedient to eval-

uate the target metric tensor on a synthetic element, which is best described by a procedure called coarse-

graining. Coarse-graining is an equidistribution technique where each node Ne
m of an element e is replaced

by a synthetic node that is located in a ‘‘more optimal’’ location than the original. This coarse-grained grid

uses adjacency information, which for each node Ne
m is the set of neighboring nodes (those nodes connected

to Ne
m by an element edge). Then, given the set neighbor nodes, the synthetic location of node Ne

m with the
position rm is obtained by averaging their coordinates.

The coarse-grained components of the metric tensor are again computed using Eq. (17); however, the

coordinates ðxem; yem; zemÞ of node Ne
m are replaced by ðxem; yem; zemÞ, which are the average of the coordinates

of the nodes linked to Ne
m by an element edge. This average is unity weighted, calculated by summing the

graph-connected adjacent node coordinates then normalizing by the number of connecting edges. In other

words, for the vertex Ne
m, the coarse-grained position vector is
Fig. 1
rem ¼ 1

N

XN
n¼1

rmn; ð18Þ
where the sum includes all the vertices linked to node Ne
m by rmn.

In the example depicted in Fig. 1, a two-dimensional triangular element is defined by vertices A, B, and

C. The coordinates of the vertex A are replaced by an arithmetic average of coordinates of vertices a, B, and

C. Similarly, the coordinates of A, C, and d produce the coarse-grained coordinates of B, whereas the coor-

dinates of A, B, a, b, and c yield the coarse-grained coordinates of C.

The coarse-graining operator is reminiscent of common Laplace grid smoothing [11], where the node

positions are shifted to average positions. This averaging process is one form of a numerical approximation
of the Laplace operator applied to a scalar. It is important to stress that using a Laplace operator to gen-

erate a synthetic metric for the finite element method is quite distinct from a Laplacian mesh smoothing

algorithm. In Laplace smoothing, the converged average node positions completely define the ultimate
d

A B

C

a

b

c

. The nodes of the triangular element ABC and their connectivity to other nodes determine the coarse-grained metric tensor.
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smoothed grid. In the coarse grained metric approach, the average node positions only determine the target

metric tensor that suggests a smoother mesh locally about element Xe. The ultimate position of the mesh

nodes is still determined as a solution to the elliptic set of Eqs. (4).

Typically, to solve the system (4), one partitions the domain X into a collection of finite elements

X = {Xe}, resulting in a nonlinear algebraic system (12). The nonlinearity arises from the dependence of
the contravariant metric tensor gab on the coefficients ain. This creates an issue in solution process; it is often

challenging to solve nonlinear algebraic problems of this form. Furthermore, as this is a three-dimensional

application, the total number of equations that must be solved is generally of respectable magnitude.

Lastly, the desire for the ultimate application to begin calculation from a predictable initial mesh state often

mandates a converged solution to the nonlinear problem. These three considerations typically lead to the

requirement to use a robust, efficient parallel solver for the base nonlinear problem.

In this paper, a Newton–Krylov approach was used to solve the system (12). The implementation details

were similar to the two-dimensional case [2]. To summarize the approach, Newton�s method was applied to
the nonlinear finite element problem [24], where the target metric is computed implicitly within the solution

procedure. This approach is based on solving a system of nonlinear algebraic equations
~F ð~uÞ ¼

F 1ðx1; y1; z1; . . . ; xN ; yN ; zN Þ
..
.

F N ðx1; y1; z1; . . . ; xN ; yN ; zNÞ

0
BB@

1
CCA ¼ 0: ð19Þ
Given this form, the Newton–Krylov solution procedure is based on using a Krylov subspace method to

solve the linear system
J i d~ui ¼ �~F ð~uÞi; ð20Þ

where
Jkl ¼
X
e

J e
kl ¼

X
e

oF e
kð~uÞ
oul

ð21Þ
is the Jacobian matrix, ~F ð~uÞi is the residual vector for the ith iterate, and~u ¼ ðx1; y1; z1; . . . ; xN ; yN ; zN Þ is the
problem state vector. The solution may be advanced to the next iteration using the expression
~uiþ1 ¼~ui þ d~ui: ð22Þ

This form of the Jacobian is based on interchanging the differentiation operator and the finite element

assembly process [25], which simplifies implementation of the solution procedure. Finally, the nonlinear

equation template is
F e
mð~uÞ ¼

X
n

Z
Dn
e

oum

ona
oun

onb
~gabe ð~uÞ

ffiffiffiffiffiffiffiffiffiffiffi
~geð~uÞ

p
d3n un � fm; ð23Þ
where the tilde over the metric factors ðe:g: ~gÞ implies the use of the coarse-grained approximation, and fm
is the term arising from the Dirichlet boundary conditions for the mth equation.

As a stopping criterion, the nonlinear iteration is halted when the residual vector is sufficiently small. In

this implementation, the convergence criteria is k~F ið~uÞk2=k~F
0ð~uÞk2 6 10�6, where ~F

0ð~uÞ is the residual vector
of the initial ‘‘guess.’’ A block preconditioner toolkit, BPKIT [26], was used to solve the linear system (20).

For all the results presented here, the toolkit�s incomplete LU factorization option ILU(1) was used as the

local preconditioner, with two passes of symmetric successive over-relaxation (SSOR) used as a global pre-

conditioner. There were 16 blocks used in the preconditioner, and the toolkit�s flexible general minimal

residual linear solver (FGMRES) was used as the Krylov solver.
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4. Numerical examples

The examples presented in this section begin with a three-dimensional grid generated on an arc-extruded

horseshoe domain. Variants of the horseshoe mesh were demonstrated to be challenging test problems for

various two-dimensional approaches [1,2]. One of the more difficult aspects of this domain is the boundary
curvature at the upper-left and upper-right areas of the top boundary, and the inner corners of the obstacle.

To form the three-dimensional mesh, the planar horseshoe is extruded following a constant radius curve.

This extrusion process forms a horseshoe-torus as illustrated in Fig. 2, and results in a third curvature fea-

ture along the extrusion direction.

Fig. 3 compares the converged results of the proposed finite element Laplace–Beltrami method with 500

Gauss–Seidel iterations of Laplacian smoothing on the horseshoe-torus domain. Note that the proposed

method provides similar properties to that seen in the two-dimensional results [2], the additional curvature

feature does not affect the mesh in a negative fashion. The Laplacian smoothing result, however, severely
folds the mesh near the external obstacle, much like the two-dimensional results shown for this method.

Figs. 4 and 5 illustrate the smoothing of a larger grid contained within a spherical region. The original

grid consists of prisms (extruded triangles) and hexahedral elements, and also exhibits several smoothing

challenges. First, the outside boundary of the sphere is convex, the mesh here curves at a constant radius

r around the outer surface. Laplacian smoothing approaches tend to uniformly ‘‘draw’’ the mesh away

from this surface and attempt to collapse it toward the center of the sphere. The second feature to note

is the cylindrical mesh pattern created by the axisymmetric prisms located around the vertical axis of the

sphere. This topology increases the tendency of the mesh to collapse toward the center of the sphere. Fi-
nally, there is the transition region between the cylindrical mesh topology of the problem axis and the

spherical topology present near the outside surface of the sphere. This feature, located roughly 1/4 of

the way down from the top of the sphere and 1/2-way between the axis and the sphere surface, is most

apparent in the unsmoothed mesh. This construct is a second degenerate form, where three hexahedral ele-

ments share a common edge, in this case normal to the plane of the view. Laplacian smoothing methods

tend to collapse these elements toward the degenerate edge. In this particular case this effect is further en-

hanced as the degenerate edges join to form a circle in the plane perpendicular to the symmetry axis of the
Fig. 2. Modified horseshoe example: A planar horseshoe-mesh extruded along a constant radius arc to form a torus (1/4 of torus

shown).



Fig. 3. Comparison of a horseshoe-torus mesh enhanced using the finite element Laplace–Beltrami method (left) and Laplacian

smoothing (right). Note severe mesh folding near the internal obstacle when Laplace smoothing is used.

Fig. 4. The grid within a sphere consisting of prisms and hexahedral elements.
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sphere. Laplace-based smoothing tends to collapse the aggregate mesh toward the center of the sphere, as

shown in Fig. 6. Although the final result is generally smooth, it is likely not of use to a simulation appli-

cation due to the excessive concentration of mesh near the axis of the problem along with the rarefaction

near the surface of the sphere. In contrast, the finite element method easily overcomes the tendency of the

mesh to collapse, as seen in Fig. 5. Indeed, this approach actually forces the mesh outward from its initial

position toward the surface while smoothing the domain.

The previous examples suggest that the proposed finite element smoother is fully effective on three-

dimensional boundary-fitted meshes that are enclosed by curved boundary surfaces. In this case, the horse-
shoe-torus is derived from a structured mesh, and the sphere example is block structured. The method does

not utilize this structure in implementation; however, the question remains concerning the effectiveness of

the approach for more traditional unstructured meshes. Fig. 7 depicts a cylindrical region that is capped by

two hemispheres, which provides an example of an inherently unstructured tetrahedral grid. A planar cut



Fig. 5. The smoothed grid corresponding to the grid of Fig. 4.

Fig. 6. Classic Laplacian smoothing applied to the sphere problem. Solution shown after 500 Gauss–Seidel iterations were performed.
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through the region of the cylinder is shown in Fig. 8. The same planar cut obtained after grid smoothing is

shown in Fig. 9. Visually, it is difficult to tell what has occurred during the smoothing process comparing

these two views. Unlike two-dimensional diagrams where the effectiveness of the global algorithm is readily

apparent, these three-dimensional cutaways expose only one surface of the interior mesh and a few node

points. Secondly, the initial mesh is of relatively high quality; the smoother does not move any node point

drastically as it converges. However, if one carefully compares the two meshes near the center and along the

3 o�clock axis, some smoothing is apparent (assume the clock sits on the cutaway surface with the 12 o�clock
position pointing directly away from the user).

Fig. 10 shows an unstructured tetrahedral grid representing a turbine nozzle, courtesy of the amiraTM

software package by TGS, Inc. (www.tgs.com). A planar cut through this grid is shown in Fig. 11, whereas

http://www.tgs.com


Fig. 7. Tetrahedral grid within a cylindrical surface with two spherical caps.

Fig. 8. A planar cut through the grid of Fig. 7.
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a planar cut through the smoothed grid is shown in Fig. 12. In these figures, the effect of smoothing is more

apparent. Particularly in the region directly opposite of the viewer, several nodes have been moved toward

more optimal locations (evaluated visually). All the unstructured domains require a quantitative quality

metric to indicate if real quality improvement has occurred, however.

The smoothness quality metric used in this study is based on a generalization of an approach advanced

by Knupp et al. [22]. This metric may be extended to three dimensions by expressing it in terms of the con-

travariant components of the descriptive metric tensor (c.f., Eq. (8)). Table 1 lists the normalized smooth-
ness functional (NSF) values for the results considered in this section. In this table, the values of the

functional vs. the iteration number are normalized to unity by dividing the successive values by the values

corresponding to the initial mesh. In all cases considered, the finite element smoother improved the quality

of the input mesh, as measured by the smoothness functional.



Fig. 9. The smoothed grid corresponding to the grid of Fig. 8.

Fig. 10. The turbine tetrahedral grid. Image courtesy of the amiraTM software package by TGS, Inc. (www.tgs.com).

Fig. 11. A cut through the grid of Fig. 10.
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Fig. 12. The smoothed grid corresponding to the grid of Fig. 11.

Table 1

Value of the normalized smoothness functional (NSF) vs. Newton iteration number for the 3D examples considered

Grid Number of unknowns Newton iteration number

1 2 3 4 5 6

Turbine 1926 1.0000 0.8295 0.8296 0.8296 0.8296 0.8296

Cylinder 2202 1.0000 0.9227 0.9229 0.9229 0.9229 0.9229

Horseshoe-torus 4959 1.0000 0.9262 0.9065 0.9126 0.9129 0.9129

Sphere 55233 1.0000 0.9842 0.9461 0.9421 0.9417 0.9417
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Table 2 compares the NSF values obtained using Laplacian and Laplace–Beltrami smoothing, respec-

tively, on the example set. Based on this metric, the proposed Laplace–Beltrami method provided superior

results, quantitatively, than the Laplacian method. The Laplace method failed to yield a qualitatively-ac-

ceptable mesh on both the horseshoe-torus and sphere problems. This result is indicated by missing entries

in the table.

The failure of the Laplacian method is not surprising; the literature discusses the tendency of this ap-

proach to yield low-quality results for domains with large-degrees of boundary curvature [1,2,11,15].

Two-dimensional results further indicate that many popular methods do not perform well on these bound-
ary-dominated problems [1,8,11]. These alternative methods were not examined for comparison purposes

here, as one would expect that their performance would only degrade further due to the presence of the

third dimension.

Fig. 13 shows the nonlinear convergence rate of Newton�s method for the example set. The dotted line

indicates the line denoting one order of magnitude reduction of the residual with each Newton iteration.

The structured and semi-structured examples (the horseshoe-torus and sphere problems) indicate excellent

performance, with near-logarithmic residual reduction. However, the unstructured cases (the turbine and

cylinder) exhibit exceptional convergence rates. From this limited data, it is not possible to deduce if the
convergence rate is a function of problem size. Indeed, the rates of both the smallest boundary-conformal

problem considered (the horseshoe-torus with 4959 unknowns) compared with the largest (the sphere at

55,233 unknowns) are similar. Actually, similarities in the mesh topology (unstructured vs. (semi)-struc-

tured) appears to have a stronger influence on the convergence rate of Newton�s method, at least for the

examples considered.



Table 2

Value of the normalized smoothness functional (NSF) obtained from the Laplace–Beltrami (LB) method and classical Laplacian

smoothing

Grid NSF metric

Laplacian LB

Turbine 0.9967 0.8296

Cylinder 0.9879 0.9229

Horseshoe-torus – 0.9129

Sphere – 0.9417

The LB results are fully-converged values and the Laplacian results are for 500 Gauss–Seidel iterations. Missing entries signify failure

of the method (see text).
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Fig. 13. Newton�s method convergence plot of the example set.
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The diagram set, Fig. 14, illustrates the linear convergence of FGMRES(50) on this set of problems,

where 50 Krylov vectors were stored during the solution. The upper-left diagram shows the linear conver-

gence history on the horseshoe-torus domain, where the vertical axis is the relative residual reduction metric

calculated by the FGMRES algorithm from BPKIT. Each curve shows the FMGRES history for a partic-

ular Newton iteration number, which is also plotted to the right of the curves. Similarly, the upper-right

diagram shows the linear convergence history on the sphere problem, with the lower-left and lower-right

diagrams corresponding to the cylinder and turbine domains, respectively.

With the exception of the sphere problem, all other examples exhibit acceptable to excellent linear con-
vergence behavior. The sphere problem exhibits numerous stalls in the FGMRES convergence behavior

and also the inability to converge after two restarts (150 total FGMRES iterations). The sphere possesses

several unique mesh constructs and curvature artifacts which may be responsible for this observed behav-

ior. The number of unknowns in the sphere problem is also much greater than the other examples. Further
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work is necessary to explore the reasons for this convergence behavior, and develop methodologies to mit-

igate this problem. As an interesting aside, this linear convergence issue does not appear to appreciably de-

grade the performance of Newton�s method on the nonlinear problem (see Fig. 13).

In closing, these solution results are based on using the Newton–Krylov method to converge the discrete

equation system. In general, full convergence is not always employed as a solution requirement in grid

smoothing. In fact, many approaches are based on the use of various relaxation methods that are iterative-

ly-applied until the desired visual result is achieved. For example, in a particular application, it may be that

100 iterations of a Gauss–Seidel procedure result in the desired mesh, i.e.,visually-smooth. Thus, the New-
ton–Krylov approach may or may not be the most desirable or attractive solution procedure for the actual

implementation of the Laplace–Beltrami approach. Its use here is primarily motivated by two factors: (1)

the need for a converged end-state to be used to compare and contrast results, and (2) repeatability of the

solution results of the ultimate physics application may demand a consistent initial problem state.
5. Conclusions

This paper generalizes the finite element methodology developed previously for planar grids [2] to three-

dimensions. The approach is based on a finite element solution to the set of Laplace–Beltrami equations for
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an unstructured mesh. In a manner similar to the planar algorithm, the method is based on specifying a

target metric, where the target metric is a prescription developed to equidistribute mesh characteristics lo-

cally in the neighborhood of each element. This prescriptive metric is refreshed each nonlinear iteration.

This iterative process guides the final mesh solution to a higher-quality result relative to the initial mesh,

given the quality criterion used for evaluation in this paper.
Unlike the two-dimensional algorithm, the target metric is estimated using a process called coarse grain-

ing, where a Laplacian-like algorithm is used to estimate a metric that is locally smoother than the current

metric. This approach is much simpler to implement in three dimensions than the dual-mesh method em-

ployed for the planar problem. This coarse-grained approach appears to be fully satisfactory for the exam-

ple set considered. Left for future activities is a detailed examination of more complex prescriptive

approaches that are better suited to capturing disparate length scales and solution features within the even-

tual application. Furthermore, three-dimensional applications challenge solution methods because of the

large number of unknowns in the algebraic system; they also possess challenging geometric characteristics
that surpass the complexity of the sphere and horseshoe-torus examples considered here. Future work must

also include a detailed analysis of the convergence issues discovered on the sphere problem, along with the

development of an effective approach to address these issues.
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